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Abstract. The vector radiative transfer equation is used for the solution of numerous problems
in the field of random media optics. It describes the transformation of the Stokes vector of a light
beam due to its propagation and scattering in a medium. However, the Stokes vector depends
on the choice of a coordinate system. Thus, one needs to account for the rotation of coordinate
systems within the framework of the standard formulation of the vector radiative transfer equation.
The coordinate-free approach has advantages in the case of complex random media, including
anisotropic and chiral ones. The aim of this paper is to derive the coordinate-invariant tensor
radiative transfer equation. The derivation is based on the concept of the light beam tensor. We
also study the relationship between the tensor and vector forms of the radiative transfer equation.

1. Introduction

The propagation of light in turbid media is often described within the framework of vector
radiative transfer theory [1–3]. The vector radiative transfer equation [1–3] describes the
change of the Stokes vector �S of a light beam due to its propagation and scattering in a
random medium. The components of the Stokes vector I,Q,U and V can be related to the
components of the electric vector �E = E1�l1 + E2�l2 of a plane monochromatic wave by the
following equations:

I = |E1|2 + |E2|2 Q = |E1|2 − |E2|2
U = 2 Re

(
E1E

∗
2

)
V = −2 Im

(
E1E

∗
2

) (1)

where the values of E1 and E2 are components of the electric field in the plane, perpendicular
to the direction of propagation. We have omitted the common multiplier in equations (1) for
the sake of simplicity. It should be pointed out that equations (1) only hold for monochromatic
waves. In the more general case of non-monochromatic waves, the phases and amplitudes of
the electric vector are not constant and the parameters (1) should be averaged with respect to
time t .

One can see that the Stokes vector is defined within the framework of the special coordinate
system, which is attached to the direction of light propagation. This direction is changed many
times during the process of light scattering in a random medium. This feature is accounted
for by using special rotation matrices [2, 3]. It is of general importance to derive the radiative
transfer equation in a tensor form, which does not depend on the specific coordinate system.
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The covariant methods were introduced into the optics of anisotropic and gyrotropic media
by Fedorov [4, 5] and led to rapid progress in the field of anisotropic media optics [4–6]. This
was due to the fact that the direct manipulation of vectors, dyadics and their invariants facilitates
solutions, condenses exposition and provides results of greater generality.

However, the coordinate-free approach has not been used much in the optics of random
anisotropic media so far. The aim of this paper is to derive the covariant tensor radiative
transfer equation and bring attention to covariant methods in radiative transfer theory.

2. Light beam tensor

Let us define the light beam as a superposition of different incoherent simple uniform waves.
These waves can have random phases and different states of polarizations. However, they are
characterized by the same speed and direction of propagation. The general case of incoherent
light beams may be studied using the notion of the light beam tensor [5]

F =
∑
s

�E(s) �E(s)∗ �n �E(s) = �n �E(s)∗ = 0 (2)

where �E = E1 �x+E2 �y+E3�z is the electric vector,
∑

s denotes the summation over all incoherent
simple waves in a beam, and the vector �n defines the direction of propagation. The dyadic
notation F = �E �E∗ means

F =




E1E
∗
1 E1E

∗
2 E1E

∗
3

E2E
∗
1 E2E

∗
2 E2E

∗
3

E3E
∗
1 E3E

∗
2 E3E

∗
3


. (3)

One obtains within the framework of the coordinate system, attached to the direction of
propagation �n‖�z that E3 = 0 and the tensor F (3) reduces to the density matrix [3, 5]

ρ =
( |E1|2 E1E

∗
2

E2E
∗
1 |E2|2

)
. (4)

The elements of the matrix ρ can be expressed in terms of components of the Stokes vector
�S (see equation (1))

ρ = 1

2

(
I + Q U − iV

U + iV I − Q

)
. (5)

Thus, both (1) and (4) depend on the choice of the coordinate system. One can find the radiative
transfer equation for the density matrix ρ in [3].

Fedorov [5] introduced the following invariants of the light beam tensor F :

I = Ft K = (
F 2
)
t

M = i
(
n×F

)
t

L = (
FF ∗)

t
(6)

where t denotes the trace (e.g. Ft = |E1|2 + |E2|2 + |E3|2, see equation (3)) and n× is the tensor
with components

n×
ac = eabcnb. (7)

Here values of nb are components of the vector �n and values eabc compose the Levi-Civita
tensor [5] with components e123 = e231 = e312 = 1 and e213 = e132 = e321 = −1. Other



The tensor radiative transfer equation 4123

components of the Levi-Civita tensor are equal to zero. Equation (7) can be written in the
following explicit form:

n× =




0 −n3 n2

n3 0 −n1

−n2 n1 0


.

It follows from equation (6) that

I = J1 + J2 + J3

K = J 2
1 + J 2

2 + J 2
3 + 2 (F12F21 + F13F31 + F23F32)

L = J 2
1 + J 2

2 + J 2
3 + F 2

12 + F 2
21 + F 2

13 + F 2
31 + F 2

23 + F 2
32

M = i [n3 (F12 − F21) + n2 (F31 − F13) + n1 (F23 − F32)]

where Fij = ∑
s E

s
i E

s∗
j , Jj = Fjj and

∑
s denotes the sum over rays in a beam.

It follows that

I = J1 + J2 K = J 2
1 + J 2

2 + 2F12F21

L = J 2
1 + J 2

2 + F 2
12 + F 2

21 M = 2 Im(F12)

at �n‖�z(n1 = n2 = 0, n3 = 1). One can see that the first invariant describes the intensity of
the light beam I . The invariant M at �n‖�z coincides with the fourth component of the Stokes
vector V (see equation (1)). Thus, the first and last components of the Stokes vectors (see
equation (1)) are coordinate independent. It should be pointed out that this is not a case for
components Q and U .

The ratio K/I 2 determines the degree of polarization [5]

p =
√

2K

I 2
− 1 (8)

and the invariant L can be used to find the semi-axes of the polarization ellipse [5]

a =
√

1
2 (I +

√
L) b =

√
1
2 (I −

√
L). (9)

For instance, it follows that

a = b =
√
I/2 (10)

at L = 0. This is the case for circularly polarized light [5].
Values (1) can be found from components of the tensor F . Thus, one can see that the

light beam tensor and its invariants can be used for the complete description of the polarization
characteristics of a light beam.

3. The radiative transfer equation

Let us now find the transfer equation for the light beam tensor in a random medium. It follows
on general grounds that the change of the light beam tensor dF (�n) in the direction, specified
by the vector �n, is due to two processes, namely, due to light scattering (dF (1) (�n)) on the path
dn from all directions to the direction �n, and light extinction (dF (2) (�n)) on the path dn due to
beam propagation in a light scattering and absorbing medium

dF = dF (1) + dF (2). (11)
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Let us now calculate these contributions for a cylindrical volume with a unit cross section.
First of all we note that light scattered by a single particle can be presented as a spherical wave

�Esca( �p)exp(ikR)

R

where �Esca( �p) is the vector amplitude of the spherical wave scattered in the direction �p, R is
the distance to the observation point and k is the wavenumber. The amplitude �Esca( �p) can be
presented in the following form due to the linearity of the Maxwell equations:

�Esca( �p) = f ( �p, �q) �E0(�q) (12)

where �E0(�q) is the electric field of the incident wave, propagating in the direction specified
by the vector �q, and f ( �p, �q) is the scattering tensor. Let us introduce the light beam tensor of
the incident beam

F =
∑
s

E
(s)
0 (�q)E(s)∗

0 (�q) (13)

and the light beam tensor of the scattered light

F ′ =
∑
s

E(s)
sca( �p)E(s)∗

sca ( �p) (14)

where the symbol s represents a single ray in a beam. It follows from equations (12)–(14) that

F ′( �p) =
∑
s

�E(s)
sca

�E∗(s)
sca =

∑
s

f �E(s)
0

�E∗(s)
0 f + = fF(�q)f + (15)

where f + = f̃ ∗ and f̃ is the transpose (f̃ik = fki) tensor. This formula establishes the law of
transformation of the light beam tensor due to the scattering process from the direction �q to
the direction �p. It is clear that the total light scattering in the direction specified by the vector
�n on the path dn from all directions �n′ will differ from equation (15) due to the integration on
the solid angle d$�n′ , namely

dF (1)(�n) = N dn
∫

d$�n′ f (�n′, �n)F (�n′)f +(�n′, �n)

where N is the number of scattering events in a unit volume.
The removal of photons from the direction �n on the path dn due to the extinction process

can be described by the operator L̂

dF (2)(�n) = −NL̂F(�n) dn. (16)

Thus, it follows from equation (11) that

dF(�n)
dn

= −NL̂F(�n) + N

∫
d$�n′ f (�n′, �n)F (�n′)f +(�n′, �n) + B(�n) (17)

where the term B(�n) describes the internal emitting sources. This is the radiative transfer
equation written within the framework of the coordinate-free approach.

Let us now determine the operator L̂. The tensor F can be presented in the following
form:

F(�n) = Fc(�n)δ(�n − �n0) + Fd(�n) (18)

where δ (�n − �n0) is the delta function. Values Fc(�n) and Fd(�n) describe the direct (coherent)
and diffused (incoherent) parts of the light field in a random medium, respectively. The
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direction of the vector �n0 coincides with the direction of an incident beam. It follows from
equations (17) and (18) that

Ḟc(�n0) + Ḟd(�n) = −NL̂Fc(�n0) − NL̂Fd(�n) + N

∫
d$�n′ f (�n′, �n)Fd(�n′)f +(�n′, �n)

+Nf (�n0, �n)Fc(�n0)f
+(�n0, �n) + B(�n) (19)

where

Ḟ (�n) ≡ dF

dn
= (�n · �∇)F.

Thus, one can obtain

Ḟc(�n0) = −NL̂Fc(�n0) (20)

for the coherent component and

Ḟd(�n) = −NL̂Fd(�n) + N

∫
d$�n′ f (�n′, �n)Fd(�n′)f +(�n′, �n) + B0(�n) + B(�n) (21)

for the diffused light field. The tensor

B0(�n) = Nf (�n0, �n)Fc(�n0)f
+(�n0, �n) (22)

describes the single light scattering of an incident light beam. It can be easily obtained after
calculation of Fc(�n0) from equation (20).

It is well known that the coherent field �Ec propagating in the direction �n0 satisfies the
following formula [7]:

�̇Ec(�n0) = iλNf (�n0, �n0) �Ec(�n0) (23)

where λ is the wavelength.
From equation (23) and the definition of the coherent component of the light beam tensor

Fc =
∑
s

�Es
c
�Es∗

c (24)

one obtains

�̇F c =
∑
s

�̇Es
c
�Es∗

c + �Es
c
�̇Es∗

c = iλN
∑
s

(
f �Es

c
�Es∗

c − �Es
cf

∗ �Es∗
c

)
(25)

or

�̇F c = iλN(fFc − Fcf
+). (26)

It follows from equations (20) and (26) for the operator L̂ that

L̂ |ψ〉 = −iλ
(
f |ψ〉 − 〈ψ | f +

)
(27)

where we have used Dirac notation.
Finally, we obtain the covariant radiative transfer equation (CRTE) for the diffused light

(see equations (21) and (22))

(�n · �∇)Fd(�r, �n) = iλN
[
f (�n, �n)Fd(�r, �n) − Fd(�r, �n)f +(�n, �n)]

+N
∫

d$�n′ f (�n′, �n)Fd(�r, �n′)f +(�n′, �n)
+Nf (�n0, �n)Fc(�r, �n0)f

+(�n0, �n) + B(�n) (28)

where �r is the radius vector of the observation point.
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The value of Fc(�r, �n0) in equation (28) is determined from (26), which can be written in
the following form:

(�n · �∇)Fc = iλN
(
f (�n0, �n0)Fc − Fcf

+(�n0, �n0)
)

(29)

or

Fc(�r, �n0) = exp{−NhL̂}F0(�r, �n0) (30)

where F0(�n0) is the beam tensor for the incident light and h is the length of a beam path in a
medium, which we consider to be uniform. Equations (27) and (30) provide the generalization
of the Bouger law.

The boundary conditions for equation (28) state that there is no diffused light arriving at
a scattering convex medium from outside,

Fd(�r0, �n) = 0 (at �n · �l < 0) (31)

where �l is the unit vector normal to the boundary in the outward direction at the point with the
radius vector �r0.

Note that the general (without introducing separate coherent and diffused components)
CRTE can be obtained from equations (17) and (27):

(�n · �∇)F (�r, �n) = iλN [f (�n, �n)F (�r, �n) − F(�r, �n)f +(�n, �n)]
+N

∫
d$�n′ f (�n′, �n)F (�r, �n)f +(�n′, �n) + B(�n) (32)

with the boundary condition

F(�r0, �n) = F0(�r0, �n) (at �n · �l < 0)

where �r0 is the radius vector of the point at the boundary of a scattering medium.
Equation (32) can be transformed into the standard vector radiative transfer equation,

assuming that �n‖�z. It follows from equation (32) that in this case

(�n · �∇)ρ(�r, �n) = iλN
[
A(�n, �n)ρ(�r, �n) − ρ(�r, �n)A+(�n, �n)]

+N
∫

d$�n′ A(�n′, �n)ρ(�r, �n′)A+(�n′, �n) + D(�n) (33)

where ρ is the density matrix (see equation (4)) and the matrix A describes the transformation
of the electric field �E = E1�l1 + E2�l2 due to light interaction with an elementary volume of
a scattering medium in the coordinate system attached to a light-scattering layer. The matrix
D(�n) can be obtained from the source termB(�n) in equation (32), assuming that �n‖�z. It follows
after substitution of equation (5) into equation (33) and simple algebraic calculations that

(�n · �∇)I (�r, �n) = −ε11I (�r, �n) − ε12Q(�r, �n) − ε13U(�r, �n) − ε14V (�r, �n)
+N

∫
d$�n′ [σ11I (�r, �n′) + σ12Q(�r, �n′) + σ13U(�r, �n′) + σ14V (�r, �n′)] + D̃1

(�n · �∇)Q(�r, �n) = −ε21I (�r, �n) − ε22Q(�r, �n) − ε23U(�r, �n) − ε24V (�r, �n)
+N

∫
d$�n′ [σ21I (�r, �n′) + σ22Q(�r, �n′) + σ23U(�r, �n′) + σ24V (�r, �n′)] + D̃2

(�n · �∇)U(�r, �n) = −ε31I (�r, �n) − ε32Q(�r, �n) − ε33U(�r, �n) − ε34V (�r, �n)
+N

∫
d$�n′ [σ31I (�r, �n′) + σ32Q(�r, �n′) + σ33U(�r, �n′) + σ34V (�r, �n′)] + D̃3

(�n · �∇)V (�r, �n) = −ε41I (�r, �n) − ε42Q(�r, �n) − ε43U(�r, �n) − ε44V (�r, �n)
+N

∫
d$�n′ [σ41I (�r, �n′) + σ42Q(�r, �n′) + σ43U(�r, �n′) + σ44V (�r, �n′)] + D̃4

(34)
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where expressions for elementsσij , εij are presented in the appendix and D̃1 = D11+D22, D̃2 =
D11 −D22, D̃3 = D12 +D21, D̃4 = i(D12 − D21). Equations (34) can be rewritten in the vector
form

(�n · �∇)�S(�r, �n) = −ε̂ �S(�r, �n) + N

∫
d$�n′ σ̂ �S(�r, �n′) + �̃

D(�r, �n) (35)

where �̃
D(�r, �n) is the vector with elements D̃1, D̃2, D̃3, D̃4 and matrices ε̂, σ̂ have elements

εij , σij (i, j = 1, 2, 3, 4), respectively. Equation (35) coincides with the standard vector
radiative transfer equation [1]. It follows from this equation, within the framework of the
scalar approximation, that

(�n · �∇)I (�r, �n) = −εI (�r, �n) + N

∫
d$�n′ σ(�n′, �n)I (�r, �n′) + B(�n) (36)

where ε = ε11, σ = σ11. This is the well known scalar radiative transfer equation [2].

4. Conclusion

In conclusion, we underline that the derived equations (28) and (32) can be used to study
the polarization characteristics of a light field in different complex random media, including
gyrotropic and anisotropic ones, within the framework of the coordinate-free approach. They
also could be of help in derivations of simple and compact tensor expressions for isotropic
media.

The description of the interaction of light with matter (reflection, refraction and scattering
of waves) in terms of the light beam tensor provides the possibility of considering the
corresponding processes by covariant tensor methods, which in many cases simplifies the
analytical derivations considerably. This was shown by Fedorov [4, 5] for the case of uniform
anisotropic and gyrotropic media, where the selection of a coordinate system either related to
the geometry of the problem (e.g. a plane-parallel layer) or to the symmetry of the dielectric
tensor leads to extremely cumbersome results. It is expected that the same progress can
be achieved for random complex media. Equations (32), (33) and (35) differ due either to
the different coordinate systems or to the different description of the light beam. However,
they provide the same information in the end, namely the intensity of the light, the degree
of polarization and the characteristics of the polarization ellipse of reflected, transmitted and
internal light fields. The choice of which equation to solve is largely dependent on the problem
at hand.

For instance, radiative transfer in isotropic random media (e.g. fogs and clouds) can be
studied with equation (35). Equation (32) simplifies radiative transport studies in complex
media (e.g. asymmetric and anisotropic ones).

To solve equation (32) one needs to know the 3 × 3 scattering tensor f (�n, �n′) of a random
medium which depends on the size of the scatterers, their shape, the dielectric tensors of the
particles, etc. This tensor can vary with the location inside a medium. Many particles can
contribute to the value of f (�n′, �n). Thus, the value of f (�n, �n′) is the average value of the
scattering tensor for the ensemble of scatterers.
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Appendix. Extinction and scattering matrices

Elements of extinction ε̂ and scattering σ̂ matrices of the vector radiative transfer equation (35)
are related to elements of matrix A in equation (33) with the following formulae:

ε11 = ε22 = ε33 = ε44 = λN(A′′
11(0) + A′′

22(0))

ε12 = ε21 = λN(A′′
11(0) − A′′

22(0))

ε13 = ε31 = λN(A′′
12(0) + A′′

21(0))

ε14 = ε41 = λN(−A′′
12(0) + A′′

21(0))

ε23 = −ε32 = λN(A′′
12(0) − A′′

21(0))

ε24 = −ε42 = −λN(A′
12(0) + A′

21(0))

ε34 = −ε43 = λN(A′
22(0) − A′

11(0))

σ11 = 1
2

(|A11|2 + |A22|2 + |A12|2 + |A21|2
)

σ12 = 1
2

(|A11|2 − |A12|2 + |A21|2 − |A22|2
)

σ13 = A′
11A

′
12 + A′

21A
′
22 + A′′

21A
′′
22 + A′′

11A
′′
12

σ14 = −A′
21A

′′
22 + A′′

21A
′
22 + A′′

11A
′
12 − A′

11A
′′
12

σ21 = 1
2

(−|A22|2 + |A11|2 + |A12|2 − |A21|2
)

σ22 = 1
2

(|A22|2 + |A11|2 − |A12|2 − |A21|2
)

σ23 = A′′
11A

′′
12 − A′′

21A
′′
22 − A′

21A
′
22 + A′

11A
′
12

σ24 = −A′
11A

′′
12 + A′′

11A
′
12 − A′′

21A
′
22 + A′

21A
′′
22

σ31 = A′
21A

′
11 + A′′

22A
′′
12 + A′′

21A
′′
11 + A′

22A
′
12

σ32 = −A′′
22A

′′
12 + A′′

21A
′′
11 + A′

21A
′
11 − A′

22A
′
12

σ33 = A′′
22A

′′
11 + A′′

21A
′′
12 + A′

22A
′
11 + A′

21A
′
12

σ34 = A′
22A

′′
11 − A′′

22A
′
11 − A′

21A
′′
12 + A′′

21A
′
12

σ41 = −A′
22A

′′
12 + A′′

22A
′
12 − A′

21A
′′
11 + A′′

21A
′
11

σ42 = A′
22A

′′
12 − A′′

22A
′
12 − A′

21A
′′
11 + A′′

21A
′
11

σ43 = −A′
22A

′′
11 + A′′

22A
′
11 − A′

21A
′′
12 + A′′

21A
′
12

σ44 = [
A′

22A
′
11 + A′′

22A
′′
11 − A′

21A
′
12 − A′′

21A
′′
12

]
where A′

ij = Re(Aij ), A
′′
ij = Im(Aij ). The symbol Aij (0) denotes the value of the amplitude

matrix element in the forward scattering direction.
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